Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.851
Filtrar
1.
Environ Geochem Health ; 46(5): 175, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619636

RESUMO

Alpine lakes are aquatic ecosystems that maintain and regulate water supply for the downstream streams, rivers, and other reservoirs. This study examined the water characteristics of various alpine lakes in Gilgit-Baltistan, Northern Pakistan. For this purpose, water was sampled and investigated for basic parameters, anions, and cations using the multi-parameter analyzers and atomic absorption spectrophotometer. Physicochemical parameters of alpine lakes were noted under the World Health Organization water guidelines, except for fluoride (F-) and turbidity in 4.3% and 36% of samples, respectively. Water quality index (WQI) classified samples (93%) as excellent and good quality (7%). Results showed maximum chronic daily intake values (0.14 ± 0.01 mg/kg-day) for nitrate (NO3-) and hazard quotient (0.80 ± 0.24) for F- in children via water intake from Upper Kachura and Shausar Lakes, respectively. Statistical analyses of Piper and Gibbs's plots revealed that the water quality is mainly characterized by bedrock geology.


Assuntos
Ecossistema , Qualidade da Água , Criança , Humanos , Lagos , Abastecimento de Água , Fluoretos
2.
Water Environ Res ; 96(4): e11021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605502

RESUMO

Anthropogenic particles (AP), which include microplastics and other synthetic, semisynthetic, and anthropogenically modified materials, are pollutants of concern in aquatic ecosystems worldwide. Rivers are important conduits and retention sites for AP, and time series data on the movement of these particles in lotic ecosystems are needed to assess the role of rivers in the global AP cycle. Much research assessing AP pollution extrapolates stream loads based on single time point measurements, but lotic ecosystems are highly variable over time (e.g., seasonality and storm events). The accuracy of models describing AP dynamics in rivers is constrained by the limited studies that examine how frequent changes in discharge drive particle retention and transport. This study addressed this knowledge gap by using automated, high-resolution sampling to track AP concentrations and fluxes during multiple storm events in an urban river (Milwaukee River) and comparing these measurements to commonly monitored water quality metrics. AP concentrations and fluxes varied significantly across four storm events, highlighting the temporal variability of AP dynamics. When data from the sampling periods were pooled, there were increases in particle concentration and flux during the early phases of the storms, suggesting that floods may flush AP into the river and/or resuspend particles from the benthic zone. AP flux was closely linked to river discharge, suggesting large loads of AP are delivered downstream during storms. Unexpectedly, AP concentrations were not correlated with other simultaneously measured water quality metrics, including total suspended solids, fecal coliforms, chloride, nitrate, and sulfate, indicating that these metrics cannot be used to estimate AP. These data will contribute to more accurate models of particle dynamics in rivers and global plastic export to oceans. PRACTITIONER POINTS: Anthropogenic particle (AP) concentrations and fluxes in an urban river varied across four storm events. AP concentrations and fluxes were the highest during the early phases of the storms. Storms increased AP transport downstream compared with baseflow. AP concentrations did not correlate with other water quality metrics during storms.


Assuntos
Ecossistema , Poluentes Químicos da Água , Plásticos , Qualidade da Água , Rios , Fezes , Monitoramento Ambiental , Poluentes Químicos da Água/análise
3.
Chemosphere ; 355: 141822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561157

RESUMO

The environmental occurrence of organophosphorus flame retardants (OPFRs) is receiving increasing attention. However, their distribution in the Xiangjiang River, an important tributary in the middle reaches of the Yangtze River, is still uncharacterized, and the potential factors influencing their distribution have not been adequately surveyed. In this study, the occurrence of OPFRs in the Xiangjiang River was comprehensively investigated from upstream to downstream seasonally. Fourteen OPFRs were detected in the sampling area, with a total concentration (∑OPFRs) ranging from 3.16 to 462 ng/L, among which tris(1-chloro-2-propyl) phosphate was identified as the primary pollutant (ND - 379 ng/L). Specifically, ∑OPFRs were significantly lower in the wet season than in the dry season, which may be due to the dilution effect of river flow and enhanced volatilization caused by higher water temperatures. Additionally, Changsha (during the dry season) and Zhuzhou (during the wet season) exhibited higher pollution levels than other cities. According to the Redundancy analysis, water quality parameters accounted for 35.7% of the variation in the occurrence of OPFRs, in which temperature, ammonia nitrogen content, dissolved oxygen, and chemical oxygen demand were identified as the potential influencing factors, accounting for 28.1%, 27.2%, 24.1%, and 11.5% of the total variation, respectively. The results of the Positive Matrix Factorization analysis revealed that transport and industrial emissions were the major sources of OPFRs in Xiangjiang River. In addition, there were no high-ecological risk cases for any individual OPFRs, although tris(2-ethylhexyl) phosphate and tributoxyethyl phosphate presented a low-to-medium risk level. And the results of mixture risk quotients indicated that medium-risk sites were concentrated in the Chang-Zhu-Tan region. This study enriches the global data of OPFRs pollution and contributes to the scientific management and control of pollution.


Assuntos
Retardadores de Chama , Compostos Organofosforados , Compostos Organofosforados/análise , Retardadores de Chama/análise , Exposição Ambiental/análise , Fosfatos/análise , Qualidade da Água , Organofosfatos/análise
4.
Sci Rep ; 14(1): 7762, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565529

RESUMO

Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Subterrânea/química , Poços de Água , Água , Qualidade da Água , Poluentes Químicos da Água/análise
5.
Environ Monit Assess ; 196(5): 419, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570389

RESUMO

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. This is particularly true for habitats important in a regulatory sense. We conducted macroinvertebrate bioassessment in constructed vernal pools in California, USA, to assess habitat functionality. This tool is modified from aquatic bioassessment; a primary tool of regulatory agencies in measuring habitat health and water quality and should be equally applicable to seasonally astatic wetlands globally.


Assuntos
Ecossistema , Monitoramento Ambiental , Áreas Alagadas , Estações do Ano , Qualidade da Água
6.
J Water Health ; 22(3): 522-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557568

RESUMO

The decline in the quality of water resources in the Amazon is very rapid in cities suffering from unplanned urban growth. The region has two defined seasons, winter (wet) and summer (dry), which directly affect the behavior of contaminants in aquatic ecosystems. The aim of this study was to assess the ecological and human health risks associated with the use of the watershed. In addition, an ecological index was proposed: the Quality Index for Aquatic Life, for the risk of contaminants to aquatic life. Sampling was carried out at six points in the Juá watershed. Physicochemical parameters, major anions, metals and total phosphorus were analyzed at both stations between 2020 and 2021. The highest concentrations of contaminants were found in the rainy season, due to the washing away of the banks. In this sense, Cl presented a concentration more than 307 times higher than that permitted by Brazilian legislation (wet). The ecological index showed that the watershed has a high risk of metals such as Cr III and Cr VI for the biota. The human health risk analysis showed a low risk; however, the lack of basic sanitation in the city indicates that monitoring of urban water resources is necessary.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Qualidade da Água , Monitoramento Ambiental , Ecossistema , Poluentes Químicos da Água/análise , Medição de Risco , Metais Pesados/análise , Rios , China
7.
J Water Health ; 22(3): 510-521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557567

RESUMO

Anecdotal evidence and available literature indicated that contaminated water played a major role in spreading the prolonged cholera epidemic in Malawi from 2022 to 2023. This study assessed drinking water quality in 17 cholera-affected Malawi districts from February to April 2023. Six hundred and thirty-three records were analysed. The median counts/100 ml for thermotolerant coliform was 98 (interquartile range (IQR): 4-100) and that for Escherichia coli was 0 (IQR: 0-9). The drinking water in all (except one) districts was contaminated by thermotolerant coliform, while six districts had their drinking water sources contaminated by E. coli. The percentage of contaminated drinking water sources was significantly higher in shallow unprotected wells (80.0% for E. coli and 95.0% for thermotolerant coliform) and in households (55.8% for E. coli and 86.0% for thermotolerant coliform). Logistic regression showed that household water has three times more risk of being contaminated by E. coli and two and a half times more risk of being contaminated by thermotolerant coliform compared to other water sources. This study demonstrated widespread contamination of drinking water sources during a cholera epidemic in Malawi, which may be the plausible reason for the protracted nature of the epidemic.


Assuntos
Cólera , Água Potável , Humanos , Abastecimento de Água , Cólera/epidemiologia , Estudos Transversais , Escherichia coli , Malaui/epidemiologia , Microbiologia da Água , Qualidade da Água
8.
J Water Health ; 22(3): 565-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557571

RESUMO

Drawing on responses from 238 beachgoers who have visited a Georgia (U.S. state) beach in the past three years, this study asks respondents about their knowledge of beach water quality monitoring, awareness of beach health advisories, perception of water quality, and expected responses upon learning of a beach's water pollution advisory. Binomial logistic regression finds that the only demographic predictor of respondents who would completely stop visiting a beach with an advisory is whether the respondent is a visitor or resident (year-round or part-time). Nearly 40% of visitors would not come to a beach with an advisory compared to 13.4% of residents. Most respondents report they would continue to visit a beach but would stay out of the water and stop harvesting seafood from the beach's waters. More than a third (36.1%), however, are unaware Georgia regularly monitors beach water for water quality, and 41.2% have never read a beach sign warning of contaminated water or seafood. Alarmingly, just over half view aesthetic factors such as no litter, no odor, and clear water as criteria for defining whether beach water is safe.


Assuntos
Praias , Qualidade da Água , Poluição da Água , Georgia , Monitoramento Ambiental
9.
Environ Monit Assess ; 196(5): 440, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592560

RESUMO

The absence of a sewer system and inadequate wastewater treatment plants results in a discharge of untreated wastewater to the urban drainage channels and pollutes receiving waters. Field visits were carried out to observe water quality parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in an urban drainage system (Kolshet drain) in Thane City, Mumbai Metropolitan Region, India. Dye-tracing studies using rhodamine WT dye were used for computing the velocity, discharge, and dispersion coefficient of the drain. The data analysis shows that the BOD and COD values in the drain are higher than the permissible limits (30 mg L-1 for BOD and 250 mg L-1 for COD), which is not suitable for disposal to any receiving water body. Also, the DO was less than the permissible limit of a minimum of 3 mg L-1 (for the survival of aquatic life). It is seen that the higher BOD load significantly reduced the DO throughout the drain. The Water Quality Analysis Simulation Program (WASP 8.32, 2019) developed by the US Environmental Protection Agency (USEPA) has been used for the simulation of the DO and BOD in the drainage channel. The model simulates an appropriate estimate of the expected variation of DO and BOD at points of interest. The modeling for the Kolshet drain is expected to enable better estimates of the wastewater parameters and the pollution transport in the drain for planning purposes.


Assuntos
Águas Residuárias , Qualidade da Água , Estados Unidos , Monitoramento Ambiental , Índia , Simulação por Computador , Oxigênio
10.
Environ Monit Assess ; 196(5): 437, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592553

RESUMO

Impervious surface cover increases peak flows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-floodplain reconnection, dissipate erosive forces from urban runoff, and enhance contaminant retention, but it is not always clear how effective such practices are or how to monitor for their effectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream flowpaths across both space and time) to narrow this knowledge gap. Specifically, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal flowpaths in response to stream-floodplain reconnection and (2) what is the scale over which restoration efforts improve stream quality. We present results for four different classes of water quality constituents (carbon, nutrients, salt ions, and metals) across five watersheds with varying degrees of stream-floodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams flow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p < 0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) significantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we find that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm events.


Assuntos
Rios , Sais , Qualidade da Água , Monitoramento Ambiental , Carbono , Cloreto de Sódio
11.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594479

RESUMO

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Assuntos
Artrópodes , Oligoquetos , Animais , Invertebrados , Lagos , Qualidade da Água , Moluscos , Monitoramento Ambiental , Ecossistema
12.
J Environ Manage ; 357: 120716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565030

RESUMO

Small watercourses are essential contributors to catchment water quality, but they continue to suffer degradation across Europe. A results-based agri-environment scheme, aimed at improving watercourse quality in Ireland, developed a rapid drainage assessment to identify point source risks. The assessment uses a scoring system based on visual indicators of nutrient and sediment risk, linking the outcomes to farmer payments. To understand how this novel drainage risk assessment relates to instream watercourse quality, we used three macroinvertebrate-based biotic indices (Q-value, Small Stream Impact Score and Proportion of Sediment Sensitive Invertebrates). Macroinvertebrate kick-sampling and physiochemical analysis were completed in May and July 2021 for 12 'At Risk' and 12 'Not at Risk' small watercourses as identified by the results-based scheme. Results show that the scheme's drainage risk assessment can identify point source risks but we found it does not directly reflect local instream quality as assessed by the biotic indices. Unexpectedly, the biotic indices showed watercourse degradation in 58% of the upstream (control) sampling points, indicating impacts not captured by the drainage risk assessment. Small watercourses displayed high heterogeneity, with significant species turnover between the sampling months. The Small Stream Impact Score was less influenced by temporal change than the Q-value index. There was a significant relationship between instream watercourse quality and sedimentation, as quantified by the Proportion of Sediment Sensitive Invertebrates. Including a measurement of instream sedimentation in the drainage assessments would improve the identification of risks and management. These results show that by linking farmer payments to the drainage risk assessments results-based payment schemes could positively contribute to improving catchment scale watercourse quality, but further work is required to capture wider sources of freshwater impacts.


Assuntos
Monitoramento Ambiental , Invertebrados , Animais , Monitoramento Ambiental/métodos , Qualidade da Água , Rios , Europa (Continente)
13.
J Environ Manage ; 357: 120627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565034

RESUMO

Serving as a vital linkage between surface water and groundwater, the hyporheic zone (HZ) plays a fundamental role in improving water quality and maintaining ecological security. In arid or semi-arid areas, effluent discharge from wastewater treatment facilities could occupy a predominant proportion of the total base flow of receiving rivers. Nonetheless the relationship between microbial activity, abundance and environmental factors in the HZ of effluent-receiving rivers appear to be rarely addressed. In this study, a spatiotemporal field study was performed in two representative effluent-dominated receiving rivers in Xi'an, China. Land use data, physical and chemical water quality parameters of surface and subsurface water were used as predictive variables, while the microbial respiratory electron transport system activity (ETSA), the Chao1 and Shannon index of total microbial community, as well as the Chao1 and Shannon index of denitrifying bacteria community were used as response variables, while ETSA was used as response variables indicating ecological processes and Shannon and Chao1 were utilized as parameters indicating microbial diversity. Two machine learning models were utilized to provide evidence-based information on how environmental factors interact and drive microbial activity and abundance in the HZ at variable depths. The models with Chao1 and Shannon as response variables exhibited excellent predictive performances (R2: 0.754-0.81 and 0.783-0.839). Dissolved organic nitrogen (DON) was the most important factor affecting the microbial functions, and an obvious threshold value of ∼2 mg/L was observed. Credible predictions of models with Chao1 and Shannon index of denitrifying bacteria community as response variables were detected (R2: 0.484-0.624 and 0.567-0.638), with soluble reactive phosphorus (SRP) being the key influencing factor. Fe (Ⅱ) was favorable in predicting denitrifying bacteria community. The ESTA model highlighted the importance of total nitrogen in the ecological health monitoring in HZ. These findings provide novel insights in predicting microbial activity and abundance in highly-impacted areas such as the HZ of effluent-dominated receiving rivers.


Assuntos
Microbiota , Rios , Rios/microbiologia , Águas Residuárias , Bactérias , Qualidade da Água
14.
J Environ Manage ; 357: 120771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565035

RESUMO

Nitrogen fertiliser in agriculture continues to be one of the largest contributors to water pollution driven by the global food demand. Consequently, policies designed to tackle nitrogen pollution tend to be focused on the farm level. Applying mitigation measures requires knowledge, local labour and financial investment to achieve desired goals. Influencing farming activity comes with challenges as policies result in economic losses. We propose Water Quality Trading (WQT) to minimize the cost of controlling water pollution and develop it for policy recommendations in the River Alde catchment in Suffolk. We apply WQT to three scenarios named Reference Pollution Target, Livestock Target Plan and Variation of Farming. Our findings demonstrate that WQT can reduce farmers nitrogen load by 8%, 7% and 18% respectively from the baseline of 6 mg/L. The scenario simulations show a net revenue increase of 6%, 5% and 18% respectively. Our study demonstrates the effectiveness of the WQT approach in reducing water pollution, promoting sustainable agriculture and meeting water management goals.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Rios , Agricultura , Nitrogênio/análise , Reino Unido
15.
J Environ Manage ; 357: 120645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579463

RESUMO

Excessive nutrient supply in agricultural regions has led to various environmental issues, thereby requiring concentrated management owing to its persistent upward trend. Nutrient budgets (NBs), a vital agricultural environmental indicator, are employed for nutrient management in agricultural areas, using data surveyed by administrative agencies. However, the spatial extent of nutrient data for nutrient budgeting is limited by administrative boundaries according to the surveying organization, posing challenges in interpreting spatial patterns at the watershed level. In this study, a novel approach was developed to identify priority nutrient management areas by applying hot spot spatial analysis to watershed-level NBs, considering hydrological characteristics. This method was applied to approximately 850 subwatersheds across the Republic of Korea, where land cover characteristics are complex. Reassessing nutrient budgets at the watershed scale, accounting for overlapping administrative boundary areas and crop cultivation ratios, indicated similar levels between the two methods. Hot spot analysis revealed that watersheds with elevated NBs mirrored the spatial patterns of livestock excreta and cropland. The spatial distribution characteristics of watersheds with high nutrient levels in rivers corresponded with the concentration characteristics of industrial and commercial areas. Therefore, applying watershed-level NBs based on land cover ratios that consider nutrient input characteristics in agricultural regions is deemed appropriate for selecting priority nutrient management areas. Collectively, this study presents a method for selecting nutrient management priority areas by simultaneously considering the spatial characteristics of various environmental factors, such as land cover, livestock excreta, river water quality, and land area-based watershed-specific NBs. The proposed approach, considering mixed land cover characteristics, is anticipated to be valuable for selecting priority management areas in watersheds with diverse pollution sources. Future research is needed to explore nutrient budgets within watersheds, the influence of land use on pollution sources, and their correlation with water quality.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Agricultura , Rios , Nutrientes
16.
J Environ Sci Health B ; 59(5): 263-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584450

RESUMO

Water pollution with pesticides is one of the most important environmental problems. Polychlorinated biphenyls (PCBs) reach water bodies via agricultural discharge. The aim of this study was to determine the contamination of different water bodies with PCB congeners, and detect the correlation between water quality parameters and seasonal distribution of these PCBs. The results indicated that water canals of AlGharbiah showed the highest ranges of temperature, total dissolved solids (TDS) in spring, and dissolved oxygen (DO) in autumn, while AlQaliobiah water bodies witnessed the highest pH and electrical conductivity (EC) ranges in summer. The highest range of a PCB congener was that of PCB44 (7.96-118.29 µg/g) in sediment samples of Giza, followed by its range (18.01-85.44 µgL-1) in surface water of AlQaliobiah. We found a potential cancer risk from dermal contact with all the investigated PCBs. Principal component analysis (PCA) showed positive correlations between most PCBs and each of EC and TDS, and a negative correlation with DO. While the correlation between PCBs and each of temperature and pH varied according to the geographic location of the governorate. In conclusion, the investigated water canals were contaminated with PCBs, which posed a potential cancer risk and deteriorated water quality.


Assuntos
Neoplasias , Bifenilos Policlorados , Poluentes Químicos da Água , Humanos , Bifenilos Policlorados/análise , Qualidade da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco
17.
PLoS One ; 19(4): e0294642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630745

RESUMO

The Cikijing River is one of the rivers of the Citarik River Basin, which empties into the Citarum River and crosses Bandung Regency and Sumedang Regency, Indonesia. One of the uses of the Cikijing River is as a source of irrigation for rice fields in the Rancaekek area, but the current condition of the water quality of the Cikijing river has decreased, mainly due to the disposal of wastewater from the Rancaekek industrial area which is dominated by industry in the textile and textile products sector. This study aims to determine the potential ecological risks and water quality of the Cikijing River based on the content of heavy metals (Cr, Cu, Pb, and Zn). Sampling was carried out twice, during the dry and rainy seasons at ten different locations. The selection of locations took into account the ease of sampling and distribution of land use. Based on the results of this study, it was found that the water quality of the Cikijing River was classified as good based on the content of heavy metals (Cr, Cu, Pb, and Zn) with a Pollution Index 0.272 (rainy season) and 0.196 (dry season), while for the sediment compartment of the Cikijing River, according to the geoaccumulation index (Igeo) were categorized as unpolluted for heavy metals in rainy and dry seasons Cr (-3.16 and -6.97) < Cu (-0.59 and -1.05), and Pb (-1.68 and -1.91), heavily to very heavily polluted for heavy metals Zn (4.7 and 4.1) . The pollution load index (PLI) shows that the Cikijing River is classified as polluted by several heavy metals with the largest pollution being Zn> Cu > Pb > Cr. Furthermore, the results of the analysis using the Potential Ecological Risk Index (PERI) concluded that the Cikijing River has a mild ecological risk potential in rainy season (93.94) and dry season (96.49). The correlation test results concluded that there was a strong and significant relationship between the concentrations of heavy metals Pb and Zn and total dissolved solids, salinity, and electrical conductivity in the water compartment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Rios , Indonésia , Chumbo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Qualidade da Água , Metais Pesados/análise , Medição de Risco , China
18.
Open Vet J ; 14(1): 144-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633157

RESUMO

Background: A commercially significant species in the aquaculture sector globally, particularly in Egypt, is Litopenaeus vannamei. Aim: The experiment's objective was to ascertain how Sanolife PRO-F impacted the growth, water quality, immunological response, and intestinal morphometry of L. vannamei. Methods: In the current investigation, which lasted 12 weeks, Sanolife PRO-F was administered to shrimp post-larvae at diet doses of 0 (control), 1 (group one), 2 (group two), and 3 (group three) g/kg diet, respectively. Each experimental group had three repetitions. Results: In the current study, shrimp fed on probiotic-treated diets showed a considerable improvement in growth performance measures and survival rate, and the nonspecific immune response was also enhanced. Shrimp fed probiotic diets had longer and more intestinal villi overall. Shrimp fed on the G2 and G3 diets showed no appreciable differences in growth or intestinal morphology. With the G2 and G3 diet, the water had lower concentrations of nitrite and ammonia. Conclusion: The study's findings indicate that Sanolife PRO-F treatment at 2-3 g/kg feed promotes the growth of shrimp, immunological response, gut health and function, and water quality.


Assuntos
Bacillus licheniformis , Bacillus pumilus , Penaeidae , Probióticos , Animais , Bacillus subtilis , Qualidade da Água , Imunidade Inata , Penaeidae/fisiologia , Probióticos/farmacologia
19.
PLoS One ; 19(4): e0300878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635835

RESUMO

Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Rios , Bangladesh , Sódio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Água Potável/análise , Índia
20.
Environ Monit Assess ; 196(5): 429, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575685

RESUMO

Water, as an indispensable constituent of life, serves as the primary source of sustenance for all living things on Earth. The contamination of surface water with heavy metals poses a significant global health risk to humans, animals, and plants. Sharkiya Governorate, situated in the East Nile Delta region of Egypt, is particularly susceptible to surface water pollution due to various industrial, agricultural, and urban activities. The Bahr Mouse Stream, crucial for providing potable water and supporting irrigation activities in Sharkiya Governorate, caters to a population of approximately 7.7 million inhabitants. Unfortunately, this vital water source is exposed to many illegal encroachments that may cause pollution and deteriorate the water resource quality. In a comprehensive study conducted over two consecutive seasons (2019-2020), a total of 38 surface water samples were taken to assess the quantity of heavy metals in surface water destined for human consumption and other applications, supported by indices and statistics. The assessment utilized flame atomic absorption spectrophotometry to determine the concentration of key heavy metals including iron (Fe), manganese (Mn), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), cobalt (Co), and chromium (Cr). The calculated mean value of the Water Quality Index (WQI) was found to be 39.1 during the winter season and 28.05 during the summer season. This value suggests that the surface water maintains good quality and is suitable for drinking purposes. Furthermore, the analysis indicated that the concentrations of heavy metals in the study area were below the recommended limits set by the World Health Organization and fell within the safe threshold prescribed by Egyptian legislation. Despite the identification of localized instances of illegal activities in certain areas, such as unauthorized discharges, the findings affirm that the Bahr Mouse stream is devoid of heavy metal pollution. This underscores the importance of continued vigilance and regulatory enforcement to preserve the integrity of these vital water resources.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Egito , Rios , Monitoramento Ambiental , Metais Pesados/análise , Cádmio/análise , Qualidade da Água , Medição de Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA